## Point Group syllabus : C<sub>2v</sub>, C<sub>3v</sub>, C<sub>2h</sub>, D<sub>2h</sub>, D<sub>3h</sub>, D<sub>4h</sub>, D<sub>6h</sub>, T<sub>d</sub> and O<sub>h</sub>

## Definition : A set of symmetry operations form a point group if all the elements in the set obey

## all the four rules of a mathematical Group.

## Water molecule: C<sub>2V</sub>

- Water molecule has Angular shape
- $\blacktriangleright$  The principal axis of the molecule is C<sub>2</sub>
- ➢ It is a non-linear molecule
- > It has two perpendicular planes i.e)  $\sigma_v$  planes
- It has no horizontal planes
- $\succ$  It has no n no of C<sub>2.</sub>
- > Therefore it does not belong to D class of point group
- $\blacktriangleright$  Hence, the point group of water molecule is C<sub>2V</sub>
- > The elements of symmetry of  $C_{2V}$  point group is {E,  $C_2, \sigma_v, \sigma_v$  } Examples :  $H_2S$



### C<sub>3V</sub> point group:

- Ammonia has pyramidal shape
- > The principal axis of the molecule is  $C_{3.}$
- $\blacktriangleright$  It has one more rotational operation namely,  $C_3^2$
- ➢ It is a non-linear molecule
- > It has three perpendicular planes i.e)3  $\sigma_v$  planes
- ➤ It has no horizontal planes
- $\succ$  It has no n no of C<sub>2.</sub>
- ➢ It has no centre of symmetry
- > Therefore it does not belong to D class of point group.
- $\blacktriangleright$  Point group of ammonia is C<sub>3V.</sub>
- Other examples are XeO<sub>3</sub>, Pcl<sub>3</sub>, CHCl<sub>3</sub>

## C<sub>2h</sub> Point group:

- > Trans  $N_2F_2$  belongs to this point group.
- $\blacktriangleright$  It has one principal axis C<sub>2.</sub>
- ➢ It is a non-linear molecule.
- ➢ It has one inversion centre i
- $\succ$  It has one horizontal plane  $\sigma_{h}$ .
- ➢ It has no vertical planes.
- $\succ$  It has no n no of C<sub>2.</sub>
- > Therefore it does not belong to D class of point group.
- > Its symmetry elements are {E, C<sub>2</sub>, i,  $\sigma_{h}$ }
- $\blacktriangleright$  Other examples are H<sub>2</sub>O<sub>2</sub>, Trans dichloro ethylene







## D<sub>2h</sub> point group:

 $CH_2 = CH_2$ 

F"""B-F

:

- ➢ It is a planar molecule.
- $\blacktriangleright$  It has one principal axis C<sub>2</sub>
- > It has two  $C_2$  axes orthogonal to the principal axis.
- Hence, it belongs to D class of point group
- It has one inversion centre
- > It also has a horizontal mirror plane intersecting the principal axis i.e)  $\sigma_{h.}$
- > It also has two vertical mirror planes parallel with the principal axis i.e)  $2\sigma_v$  planes

dola

- > Its symmetry elements are {E, C<sub>2</sub>, 2 C<sub>2</sub>, i,  $2\sigma_v, \sigma_{h.}$ }
- Another example is
- $\triangleright$

# D3h Point group:

- > It has Triangular planar shape
- It is a non-linear molecule.
- $\triangleright$  It has one principal axis C<sub>3</sub>
- $\blacktriangleright$  It also has  $C_3^2$  axis of rotation
- > It has three  $C_2$  axes orthogonal to the principal axis.
- Hence, it belongs to D class of point group
- > It has three vertical planes i.e)  $3\sigma_v$  planes
- > It also has a horizontal mirror plane intersecting the principal axis i.e)  $\sigma_h$
- > Its symmetry elements are {E, C<sub>3</sub>, C<sub>3</sub><sup>2</sup>, 3 C<sub>2</sub>,  $3\sigma_{v}$ ,  $\sigma_{h}$ , 2S<sub>3</sub> }
- > Other examples are, Pcl5, eclipsed ethane

## D<sub>4h</sub> point group:

- $\blacktriangleright$  Ptcl<sub>4</sub><sup>2-</sup> has square planar geomentry.
- It is a non-linear molecule
- $\blacktriangleright$  It has one principal axis C<sub>4</sub> and C<sub>4</sub><sup>2</sup>
- ▶ It also has one perpendicular C2 axis
- $\blacktriangleright$  It has four C<sub>2</sub> axes orthogonal to the principal axis.
- Hence, it belongs to D class of point group
- Similarly, it has 2 vertical planes and two dihedral planes i.e)  $2\sigma_v$  planes and  $2\sigma_d$  planes.
- It has one inversion centre
- $\succ$  It also has two S<sub>4</sub> axis.
- > It also has a horizontal mirror plane intersecting the principal axis i.e)  $\sigma_h$
- > Its symmetry elements are {E, C<sub>4</sub>, C<sub>4</sub><sup>2</sup>, C<sub>2</sub>, 4 C<sub>2</sub>,  $2\sigma_v$ ,  $2\sigma_d$ , i,  $\sigma_{h,2}$ , 2S<sub>4</sub> }
- $\succ$  Other examples are XeF<sub>4</sub>,

## D<sub>6h</sub> point group:

- Benzene
- ➢ It is a non-linear molecule.
- $\succ$  It has one principal axis C<sub>6</sub>
- > It has six  $C_2$  axes orthogonal to the principal axis.
- Hence, it belongs to D class of point group
- Similarly, it has three vertical planes and three dihedral planes i.e)  $3\sigma_v$  planes and  $3\sigma_d$  planes.
- ➢ It has one inversion centre
- > It also has a horizontal mirror plane intersecting the principal axis i.e)  $\sigma_h$
- > In addition, it also has  $2S_3$  and  $2S_6$  improper axis of rotation.
- > Its symmetry elements are {E,2C<sub>6</sub>, C<sub>2</sub>, 6 C<sub>2</sub>,  $3\sigma_{v}$ ,  $3\sigma_{d}$ , i,  $\sigma_{h,}$ , 2S<sub>3</sub>, 2S<sub>6</sub> }
- > Other examples are coronene, kekulene, [18]- Annulene, superphane

### **Cubical point group;**

## T<sub>d</sub> point group :

- $\succ$  It is a non-linear molecule.
- > The principal axis of Td point group is  $C_3$ .
- $\succ$  It has three C2 axes.
- It also has six dihedral planes.
- ➢ It has no inversion centre
- > It has no horizontal mirror plane intersecting the principal axis i.e)  $\sigma_h$
- It has no C5 axis of symmetry
- > Its symmetry elements are {E, 8C<sub>3</sub>, 3C<sub>2</sub>,  $6 \sigma_d$ ,  $6S_4$ }
- > Other examples are CH4, Urotropine, fullerene-28, adamantine



