Point Group syllabus : $\mathbf{C}_{2 \mathrm{v}}, \mathbf{C}_{3 \mathrm{v}}, \mathrm{C}_{2 \mathrm{~h}}, \mathbf{D}_{2 \mathrm{~h}}, \mathbf{D}_{3 \mathrm{~h}}, \mathbf{D}_{4 \mathrm{~h}}, \mathrm{D}_{6 \mathrm{~h}}, \mathbf{T}_{\mathrm{d}}$ and \mathbf{O}_{h}

Definition : A set of symmetry operations form a point group if all the elements in the set obey all the four rules of a mathematical Group.

Water molecule: $\mathrm{C}_{2 \mathrm{v}}$

> Water molecule has Angular shape
\Rightarrow The principal axis of the molecule is C_{2}
$>$ It is a non-linear molecule
$>$ It has two perpendicular planes i.e) σ_{v} planes
$>$ It has no horizontal planes
$>$ It has no n no of C_{2}.

$>$ Therefore it does not belong to D class of point group
$>$ Hence, the point group of water molecule is $\mathrm{C}_{2 \mathrm{~V}}$
$>$ The elements of symmetry of $\mathrm{C}_{2 \mathrm{v}}$ point group is $\left\{\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{v}}, \sigma_{\mathrm{v}}{ }^{\prime \prime}\right\}$ Examples : $\mathrm{H}_{2} \mathrm{~S}$

$\mathrm{C}_{3 \mathrm{~V}}$ point group:
$>$ Ammonia has pyramidal shape
The principal axis of the molecule is C_{3}.
$>$ It has one more rotational operation namely, $\mathrm{C}_{3}{ }^{2}$
$>$ It is a non-linear molecule
$>$ It has three perpendicular planes i.e) $3 \sigma_{\mathrm{v}}$ planes
$>$ It has no horizontal planes

$>$ It has no n no of C_{2}
$>$ It has no centre of symmetry
$>$ Therefore it does not belong to D class of point group.
\Rightarrow Point group of ammonia is $\mathrm{C}_{3 \mathrm{v}}$.
$>$ Its symmetry elements are $\left\{\mathrm{E}, \mathrm{C}_{3}, \mathrm{C}_{3}{ }^{2}, \sigma_{\mathrm{v}}{ }^{\prime}, \sigma_{\mathrm{v}}{ }^{\prime \prime}, \sigma_{\mathrm{v}}{ }^{\prime \prime}{ }^{\prime \prime}\right\}$
$>$ Other examples are $\mathrm{XeO}_{3}, \mathrm{Pcl}_{3}, \mathrm{CHCl}_{3}$

$\mathrm{C}_{2 \mathrm{~h}}$ Point group:

$>$ Trans $\mathrm{N}_{2} \mathrm{~F}_{2}$ belongs to this point group.
$>$ It has one principal axis C_{2}
$>$ It is a non-linear molecule.
$>$ It has one inversion centre i
$>$ It has one horizontal plane σ_{h}.

$>$ It has no vertical planes.
$>$ It has no n no of C_{2}.
$>$ Therefore it does not belong to D class of point group.
$>$ Its symmetry elements are $\left\{\mathrm{E}, \mathrm{C}_{2}, \mathrm{i}, \sigma_{\mathrm{h}}\right\}$
$>$ Other examples are $\mathrm{H}_{2} \mathrm{O}_{2}$, Trans dichloro ethylene

$\mathrm{D}_{\text {2h }}$ point group:

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$

> It is a planar molecule.
$>$ It has one principal axis C_{2}
$>$ It has two C_{2} axes orthogonal to the principal axis.
$>$ Hence, it belongs to D class of point group
$>$ It has one inversion centre
$>$ It also has a horizontal mirror plane intersecting the principal axis i.e) σ_{h}
> It also has two vertical mirror planes parallel with the principal axis i.e) $2 \sigma_{\mathrm{v}}$ planes
$>$ Its symmetry elements are $\left\{\mathrm{E}, \mathrm{C}_{2}, 2 \mathrm{C}_{2}, \mathrm{i}, 2 \sigma_{\mathrm{v}}, \sigma_{\mathrm{h} .}\right\}$
$>$ Another example is

D3h Point group:

> It has Triangular planar shape
$>\mathrm{It}$ is a non-linear molecule.
$>$ It has one principal axis C_{3}
$>$ It also has C_{3}^{2} axis of rotation
$>$ It has three C_{2} axes orthogonal to the principal axis.
$>$ Hence, it belongs to D class of point group
$>$ It has three vertical planes i.e) $3 \sigma_{v}$ planes
> It also has a horizontal mirror plane intersecting the principal axis i.e) σ_{h}
$>$ Its symmetry elements are $\left\{\mathrm{E}, \mathrm{C}_{3}, \mathrm{C}_{3}^{2}, 3 \mathrm{C}_{2}, 3 \sigma_{\mathrm{v},} \sigma_{\mathrm{h},} 2 \mathrm{~S}_{3}\right\}$
$>$ Other examples are, Pcl 5 , eclipsed ethane

$\mathrm{D}_{4 \mathrm{~h}}$ point group:

$>\mathrm{Ptcl}_{4}{ }^{2-}$ has square planar geomentry.
> It is a non-linear molecule
$>$ It has one principal axis C_{4} and $\mathrm{C}_{4}{ }^{2}$
$>$ It also has one perpendicular C 2 axis
$>$ It has four C_{2} axes orthogonal to the principal axis.
$>$ Hence, it belongs to D class of point group
$>$ Similiarly, it has2 vertical planes and two dihedral planes i.e) $2 \sigma_{v}$ planes and $2 \sigma_{\mathrm{d}}$ planes.
> It has one inversion centre
$>$ It also has two S_{4} axis.
$>$ It also has a horizontal mirror plane intersecting the principal axis i.e) σ_{h}
$>$ Its symmetry elements are $\left\{\mathrm{E}, \mathrm{C}_{4}, \mathrm{C}_{4}^{2}, \mathrm{C}_{2}, 4 \mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}, 2 \sigma_{\mathrm{d}, \mathrm{i}}, \sigma_{\mathrm{h},} 2 \mathrm{~S}_{4}\right\}$
$>$ Other examples are XeF_{4},

$D_{6 h}$ point group:

> Benzene
$>$ It is a non-linear molecule.

$>$ It has one principal axis C_{6}
$>$ It has six C_{2} axes orthogonal to the principal axis.
$>$ Hence, it belongs to D class of point group
$>$ Similiarly, it has three vertical planes and three dihedral planes i.e) $3 \sigma_{v}$ planes and $3 \sigma_{d}$ planes.
$>$ It has one inversion centre
$>$ It also has a horizontal mirror plane intersecting the principal axis i.e) σ_{h}
$>$ In addition, it also has $2 \mathrm{~S}_{3}$ and $2 \mathrm{~S}_{6}$ improper axis of rotation.
$>$ Its symmetry elements are $\left\{\mathrm{E}, 2 \mathrm{C}_{6}, \mathrm{C}_{2}, 6 \mathrm{C}_{2}, 3 \sigma_{\mathrm{v},} 3 \sigma_{\mathrm{d},} \mathrm{i}, \sigma_{\mathrm{h},}, 2 \mathrm{~S}_{3}, 2 \mathrm{~S}_{6}\right\}$
$>$ Other examples are coronene, kekulene,[18]- Annulene, superphane

Cubical point group;

T_{d} point group :
$>$ It is a non-linear molecule.
$>$ The principal axis of Td point group is C_{3}.
$>$ It has three C 2 axes.

$>$ It also has six dihedral planes.
$>$ It has no inversion centre
$>$ It has no horizontal mirror plane intersecting the principal axis i.e) σ_{h}
$>$ It has no C5 axis of symmetry
$>$ Its symmetry elements are $\left\{\mathrm{E}, 8 \mathrm{C}_{3}, 3 \mathrm{C}_{2}, 6 \sigma_{\mathrm{d},} 6 \mathrm{~S}_{4}\right\}$
$>$ Other examples are CH 4 , Urotropine, fullerene-28, adamantine

